一文讀懂AI搜索

有個詞叫缸中之腦(Brain in a Vat)。什麼意思呢?

想象一個血腥的畫面:

然後,大腦神經末梢,連接到一臺超級計算機,計算機按照設定程序,向你的大腦發送各種信息,讓你以爲以前很正常。

那麼,對取出來的大腦來說,世界是不是依然和原來的一樣?你看到的人、物體、天空,感受,還有記憶,是不是都還在?

這個實驗,常用來說明懷疑論、唯我論和主觀唯心主義的觀點,簡單講:即我所體驗的、看到的、到底是真的假的呢?

怕你共情不多,我再舉個例子:

好不容易休息半天,躺在沙發上,看着外面陰雨天,突然想到昨天剛上映的恐怖片,還沒看。於是,打開影片,剛看一半,心跳加速,你決定不看了。

爲什麼?因爲太恐怖了。恐怖畫面的信息,一次次傳遞到“缸中之腦”,讓你覺得太真實,似乎恐怖畫面馬上要出現在自己身上。

但你知道嗎?這些都是大腦模仿出來的,看似真實,未必真實,我們的感知,不僅由大腦產生,身體,也會影響它。

比如:

這就是具身認知,是思考,感覺、行爲三者共振的結果,認識到它,你能感受到,外面我們接收到的任何信息,故事是一個個畫面,所描繪的場景只要大腦熟悉,它都會共鳴。

而AI搜索,是什麼呢?本質像一個“缸中之腦”。

運行在一個強大的模型上,模型像它的基礎,幫它站穩腳跟,外面信息是它的食物,通過你的搜索,不斷訓練自己推理能力。

不論什麼AI搜索軟件,當你問題時,它都會遵循一個六步走的公式:

幻想一下,現在來到未來時代,站在圖書館裡,面前有一個人工智能,現在要找一本《窮查理寶典》,你會怎麼做?

你可以手動輸入,或者對着它說:“幫我找一本叫《窮查理寶典》。”此時,AI會利用語言技術,快速分析你的意圖,提煉出最重要的部分,比如:書名、作者、人名。

然後,它會把你的問題和圖書館裡的文檔、圖片快速匹配,從中找出重要的段落和句子。接着,它會做降噪處理,去掉干擾的內容,比如廣告、重複的段落,確保剩下的都是有用的信息。

最後,AI會把所有找到的信息整合起來,生成一個答案,這就是AI搜索的過程。不難理解吧。

我突然想到一個畫面:

從人工智能角度看,答案只有一個詞:檢索。

也就是說:你背誦的所有資料,最後一刻,學校用一張試卷來檢索大腦有沒有記住,當成績達標時,證明你通過了。

02

明白AI搜索的六步公式,能得到什麼啓發呢?有兩點:

一,知道AI的回答爲什麼很乾巴,二,知道它爲何缺乏情感和個性。

AI搜索生成邏輯有一些限制,爲避免產生錯誤信息和不準確的信息,AI會傾向於保守地給你高頻、標準化的表達。這種傾向自然會使回答顯得更加刻板。

比如:

你問AI如何做好品牌營銷?它一定會告訴你,首先要了解目標市場,然後創建一個獨特的品牌定位,接着進行市場推廣,最後通過反饋不斷優化品牌策略。

另外,作爲“缸中之腦”,AI只有一個搜索框,無法感受你的語氣,看不到其他信息,所以也無法理解你的情感。

這樣一來,AI生成的答案就缺乏人類的情感色彩和個性,看起來很機械,或者像是官方的回答。

值得一提的是:人們常說,一個人學習什麼知識,他的見識就有多高。AI也是一樣的。你給它喂草料,它自然吐不出鑽石來。

所以,大公司爲了防止AI搜索出來的內容很水,就會限制訓練內容,會給AI喂新聞報道、學術論文和正式文本。這些文本風格比較客觀,所以,AI學完後,回答也會是類似的風格。

現在AI搜索雖然看似有推理能力,但我測試了很多,發現整體推理還是比較弱。

一個主要原因,人類說話時,本身推理性就不強。所以,AI學習的內容也會相對較弱。在文字相關的搜索上,這種情況很常見,理科的內容相對更嚴謹一些。

顯然,“缸中之腦”就是“缸中之腦”。看似聰明,但離不開三點:一,大模型作爲基礎,二,固定的模型,三,知識庫。

因此,重要的結論是:用AI搜索時,你不給它一個很健全的 prompt,它的解析能力會變得很弱,得到的答案自然很難讓人滿意。

03

你有沒有想過,AI搜索平臺和內容生態到底什麼關係?

我覺得,從過去的傳統搜索,到現在AI搜索,用一句話來形容轉變的過程便是:從獨立到融合,再到獨立。

爲什麼呢?

沒有大模型之前,谷歌在1998年開始做大規模搜索,後來進軍中國,由於數據方面的問題,谷歌被限制,隨後,百度在2000年快速崛起,靠爬蟲抓取大量網頁,然後分發和售賣廣告起家。

這兩家公司商業模式基本相似。

谷歌做了一個叫Knowledge Graph的知識庫,還有Google Answers,百度則推出了“百度知道”和“百度百科”。

後來,國內360、搜狗也跟着做類似的產品。網頁時代落幕,張一鳴用一個算法推薦,讓今日頭條拔地而起。頭條採用推薦機制的同時,也嘗試建立內容生態。

比如:

孵化垂類創作者,推出各種與內容相關的產品,但直到現在,我都覺得它還沒成功,今日頭條增長停滯後,頭條搜索也沒法跟着增長。

後來短視頻涌現,抖音起來,它建立一個良好的內容生態和增長模式,所以,抖音搜索成功了。

不管怎麼樣,它們的核心目的只有一個,把內容控制在自己手裡,通過掌握內容,建立壁壘,因爲內容生態對搜索平臺有很大的依賴性。

內容提供者,要依靠搜索引擎,來讓內容被更多人看到,而搜索引擎,則要高質量的內容來吸引用戶,並提供有用的搜索結果。

有了大模型之後呢?

微軟推出新版必應,緊接着谷歌、百度、360和崑崙萬維等企業也開始佈局AI搜索。

李彥宏一直強調,把生成式AI技術和搜索深度整合在一起。周鴻禕也說,做搜索引擎的企業,最有機會研究像ChatGPT這樣的產品,還有崑崙萬維、秘塔AI也在加緊跟上。

不管怎麼說,它們有相似之處:整合全網信息,讓用戶用自然語言表達需求,並提供經過組織和提煉的答案,這樣可以減少冗餘信息的時間消耗,確保答案的可追溯性、可信賴性。

不過,儘管這些搜索引擎,憑藉原有的知名度、用戶基礎在市場上佔據主導地位,由於移動互聯網時代APP的“信息孤島”現象,它們並沒有完全掌控所有信息,反而,垂直搜索引擎正在逐漸崛起。

比如:

小紅書推出自己的搜索,今日頭條推出豆包,淘寶推出原生AI應用——淘寶問問,它嵌入淘寶搜索框,服務於月活躍用戶近9億、每日產生數百億次搜索的龐大流量。

現在,抖音搜索量在移動端已經超過百度,小紅書通過用戶的真實分享和有用的筆記,建立了強大的社區氛圍,這都是各自的優勢。

因此,我看到兩種趨勢正在出現:一是通用搜索的AI升級,二是垂類搜索的崛起。

垂類搜索數據,主要來自自己的平臺,類似於站內搜索,信息更服務於細分場景。當信息量足夠多時,就會自然涌現。

長遠來看,擁有優質內容的社區,做的搜索會更有優勢,因爲好內容平臺能夠吸引和留住用戶,進而提升搜索功能的價值和使用頻率。

明白這些也就理解了,我爲什麼說,搜索會經歷從獨立到融合,再到獨立的過程。畢竟,獨立,是全新的獨立,是細分的獨立。

實在不信的話了,你想想360AI、秘塔AI,天工AI到底有什麼區別?把它們和淘寶問問、抖音搜索一比更明確呢?因此,未來優質內容社區的搜索功能將會勝出。

04

到這裡,我們可以思考下:AI搜索的本質是什麼?

我認爲,AI搜索真正的關鍵在於AI技術本身,而不是傳統的搜索方式。這就像“AI+”和“+AI”的區別。

AI+,更像把AI技術加到已有的系統或產品上。比如,在傳統搜索引擎上加入AI功能,這種方式主要在現有技術基礎上,增強功能。

+AI,不一樣。

要求從一開始就以AI爲核心,建立一個系統或產品。比如,設計一個完全依賴AI進行的搜索引擎,它所有功能都圍繞AI技術展開,更像是從頭開始,完全依賴AI技術運作。

很顯然,“AI+”是改進現有系統,而“+AI”是從零開始,完全依靠AI技術。AI搜索真正力量在於後者,也就是“+AI”。

對於一般簡單問答,AI搜索只彌補傳統搜索的不足。但要真正創新和突破,要尋找新的應用場景和特定領域,比如學術、醫療、法律等。這些領域中,AI驅動的搜索才能真正發揮戰略意義。

“AI原生”(AI Native)很重要,因爲經過多年的發展,傳統方法已經挖掘了所有可能性,AI原生的定義是,只有在引入AI能力的情況下,產品才能實現。

這種情況下,AI是最大的變量,但AI比例並不重要。

關鍵在於產品需要找到交叉點:哪些場景是隻有AI才能實現?同時又滿足大規模用戶需求。這種探索越多越快,競爭優勢就越大。這也是對各家產品經理的巨大考驗。

那麼,問題來了:

有人會覺得,傳統搜索市場還有價值嗎?肯定的。

傳統搜索的強項在於尋址和尋找資訊。從商業角度看,PC端搜索市場增量有限,移動端又被抖音、小紅書等平臺分流,不過,百度財報中,搜索引擎依然是基本盤的重要組成部分。

還有人認爲,谷歌和百度壟斷這麼多年,其他玩家還有機會嗎?來看一組美國statcounter機構的數據:

截至2024年5月6日,美國搜索市場中,谷歌份額下降到了77.52%,其他市場被Bing和Yahoo蠶食,但谷歌基本盤還算穩。國內截至4月,電腦端必應的份額是37.24%,百度是22.53%,但百度的主導地位已經不在了。

雖然數據會存在偏差,但能看出搜索市場的變化和機會,AI搜索更應該理解用戶意圖,完成複雜的任務。

比如:

用戶搜索不僅僅是尋找信息,還包括找地址,或查找短內容的源頭;再比如,通過AI找到過去5年城市人口的發展趨勢,甚至,搜索新能源汽車的滲透率趨勢和原因。

還有找電影、追溯圖片等等......,所以,需求背後,是AI搜索目前還沒有攻克的場景。

總結而言

AI+,還是+AI,要看企業選擇。

不論哪條路,我都認爲,垂直領域的數據,將成爲重要開採對象,不然怎麼向數據要增量?那麼問題來了:什麼樣的垂直數據還未被開採呢?嗯,值得思考的問題。